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Fronts in a bistable medium with two global constraints:
Oscillatory instability and large-amplitude limit-cycle motion

M. Meixner, P. Rodin,* and E. Scho¨ll
Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany

~Received 22 June 1998!

We study the propagation of fronts in a reaction-diffusion model of a bistable medium with two global
constraints. The model applies to lateral current density fronts in three-electrode bistable semiconductor sys-
tems driven by the main and gate circuits. When taken separately, these constraints provide positive and
negative feedbacks on front dynamics leading to accelerated and decelerated fronts, respectively. Under two
constraints, there is an interplay between positive and negative feedback resulting in an oscillatory instability
of a stationary front and large-amplitude limit-cycle motion. The instability occurs purely due to the global
coupling and is not sensitive to the effect of the boundaries.@S1063-651X~98!12311-5#

PACS number~s!: 05.70.Ln, 72.20.Ht, 85.30.2z
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I. INTRODUCTION AND MODEL

Global and nonlocal coupling has been recently rec
nized as an important factor for pattern formation in spatia
extended active media@1–11#. Generally, global coupling is
related to external constraints imposed on the system dyn
ics. For lateral current density patterns in bistable semic
ductor systems the global coupling is introduced by the
ternal circuit which is used for operating the system@12#. In
such systems the global excitation level can be character
by the voltage applied across the device. The dynamics
self-organized nonlinear pattern~e.g., current filament, lat
eral current density front, etc.! that causes a variation of th
total current simultaneously changes the voltage drop at
external load and/or internal resistance of the voltage sou
That leads to the variation of the voltage across the dev
This type of feedback is well known with respect to statio
ary @12,13# and spiking filaments@14# in bistable semicon-
ductor elements and has been recently discussed for la
current density fronts@15#.

In this paper we introduce a model of a bistable medi
with two global constraints. The model applies to lateral c
rent density fronts in three-electrode~gate-driven! bistable
semiconductorpnpnstructures~Fig. 1!. If such a structure is
switched from the low conductivity to the high conductivi
state, a switching front triggers double injection of electro
and holes from cathode and anode increasing the conce
tion of excess carriers up to ten orders of magnitude. T
resulting dramatic increase of both conductivity and lig
emission provides a basis for numerous applications not o
in power electronics and optoelectronics@16# but also in pat-
tern recognition@17,18#. Generally, the spatiotemporal dy
namics of current density distributions in a gate-driven str
ture should be considered together withtwo global
constraints imposed on the internal dynamics by the exte
main and gate circuits@19#. Recently we have shown that th
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type of feedback upon the front dynamics provided by co
straints via the main and gate circuits, respectively, is qu
tatively different@15#: Whereas for the gate circuit the feed
back is positive ~activatory constraint! and results in
acceleration of the front motion@15#, for the main circuit it is
negative~inhibitory constraint! and leads to deceleration~see
also @13#!. In this article we study the complex dynamics
current density fronts that occur due to the interplay betw
negative and positive feedbacks. We demonstrate that
destabilizing action of the activatory constraint together w
the stabilizing effect of the inhibitory constraint may result
an oscillatory instability of a stationary front and large
amplitudelimit-cycle motion. In contrast to bistable system

d-

FIG. 1. Sketch of the gate-drivenpnpn structure and the exter
nal circuits. The potential drops between the cathodeK and thep
layer, the gateG, and the anodeA are denoted bya, u, and U,
respectively. The variablea controls the internal state of the devic
High values ofa correspond to the high conductivity state of th
device and high current densityJ between the cathode and anod
The current density front propagates in the transverse direc
along thex axis. The spatial distribution ofa along they axis is
assumed to be homogeneous. The inset shows the cross sect
the structure.
5586 © 1998 The American Physical Society
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FIG. 2. Bistable and monostable regimes of the active medium.~a! Different regimes in the plane of control voltageu and supply voltage
U. For the monostable regime thea(u,U) dependence is single valued. For the bistable regime there are two valuesaon, aoff corresponding
to the stable homogeneous on and off states, respectively, and an intermediate unstable stateaint . The inset shows the homogeneo
stationarya(u,U) dependence. Regimes related to hot fronts (aon propagates intoaoff) and cold fronts (aoff propagates intoaon) are
depicted. The line separating these two regimes corresponds to zero front velocityv(u,U)50. ~b!,~c! Cross sectionsa(u) anda(U) of the
a(u,U) dependence atU530.75 andu50, respectively. The pointu50, U530.75 corresponds to a stationary front. The dashed lines s
the corresponding current-voltage characteristicsj (u)[ j „a(u),u… andJ(U)[J„a(U),U… which areZ shaped for the gate circuit~b! andS
shaped for the main circuit~c!. The Ohmic component of the current densityJ is neglected. Here and throughout the paper the coeffici
of the local kinetic functionsf (a,u,U) are chosen asa523109, b514.5,g5107, k5109 as in@15#. All potentialsa, u, U, and j /su are
in units of kT/e; J is in units ofJS .
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with a single global constraint, where an oscillatory instab
ity is caused by the attraction of a front by the system bou
aries @13,15#, under two constraints the instability occu
purely due to the global coupling andis not sensitive to the
boundary conditions. Our consideration is applicable to a
bistable medium with two global parameters controlling t
front behavior.

The model equations

ta

]a~x,t !

]t
5 l 2

]2a~x,t !

]x2
1 f ~a,u,U !,

xP@0,L#,
]a

]x U
0,L

50, ~1!

tu~u!
du

dt
5u02u2r E

0

L

j ~a,u!dx, tu~u![rc~u!,

c~u![cext1cint , ~2!

tU~U !
dU

dt
5U02U2RE

0

L

J~a,u!dx,

tU~U ![RC~U !, C~U ![Cext1Cint ~3!

describe a gate-driven multilayer semiconductor struct
@19,15# as shown in Fig. 1. The internal state of the struct
is characterized by the order parametera(x,t) determining
the bistability and is governed by the reaction-diffusi
equation ~1! with a nonpolynomial local kinetic function
@20,15#

f ~a,u,U ![2aa1expa2b exp~2U12a!1gU1ku.
~4!

The order parametera has the meaning of thep-base poten-
tial. The characteristic lengthl and the coefficientsa, b, g,
k of the local kinetic function are determined by the stru
tural parameters@20#, ta is the characteristic relaxation tim
-
-

y

e
e

-

of a ~see@15,20# for details!. Neumann boundary condition
for a(x,t) are assumed. Cathode-gate and cathode-an
voltages are denoted byu andU, respectively. All potentials
a, u, U are in units ofkT/e. The dynamics ofu and U is
described by Kirchhoff’s equations~2!, ~3! for the main and
control circuit, respectively~Fig. 1!. For the current density
per unit length between the gate and the cathodej (a,u), and
between the cathode and anodeJ(a,U) we assume@19,15#

J~a,U !5sUU1JS~expa21!, j ~a,u!5su~u2a!,
~5!

with linear conductivitiessU , su . Equations~2! and ~3!
represent global constraints imposed on the internal dyn
ics of a(x,t) and have the form of dynamical equations f
the variablesu, U of the bistable medium. The limit case o
two static constraintstu ,tU50 has been studied in@19#.
Hereinafter capital and small letters refer to the main a
gate circuits, respectively. The characteristic relaxation tim
tu(u),tU(U) are determined by the sums of the different
capacitances of the external circuitscext, Cext and the differ-
ential cathode-gate and cathode-anode capacitancescint ,
Cint , respectively. Null isoclines related to these constrai
are controlled by the external loadsr .0, R.0 and the volt-
age sourcesu0 , U0 .

Thea(u,U) dependence that results from the null isocli
f (a,u,U)50 is bistable in a certain range of parametersu, U
@Fig. 2~a!#. The a(u) dependence calculated forU5const
@Fig. 2~b!# and the a(U) dependence calculated foru
5const @Fig. 2~c!# are bothS shaped. The local current
voltage characteristic related to the gate circuitj (u)
[ j „a(u),u… is Z shaped@Fig. 2~b!# and the local current-
voltage characteristic related to the main circuitJ(U)
[J(a(U),U) is S shaped@Fig. 2~c!#. For u,U5const cor-
responding to the bistable regime any steplike initial pro
a(x) which consists of the two stable homogeneous ste
statesaon and aoff @see Fig. 2~a!# develops into a moving
front which propagates in a self-similar way with a consta
velocity v(u,U) ~Fig. 3!. This corresponds to the propag
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tion of a stable state into a metastable state@21#. The direc-
tion of the front propagation is determined by the sign of
integral @22#

A~u,U ![E
aoff

aon
f ~a,u,U !da. ~6!

For A.0 the on state propagates into the off state (v.0, hot
front! and forA,0 the off state propagates into the on sta
(v,0, cold front!. The line of zero velocityv(u,U)50 cor-
responds to the parametersuco ,Uco given by the equal area
rule A(uco ,Uco)50 @12,22#, where co stands for phase c
existence. Note that this line, separating hot and cold fro
is also shown in Fig. 2~a!. In sufficiently large systems (L
@W, whereW is a characteristic front width! the relaxation
of the homogeneous plateaus of the kink pattern is fa
than the motion of the front wall and therefore the velocity
the globally coupled front is determined by the instantane
values of the global parametersu andU with good accuracy
@1,15#.

II. POSITIVE AND NEGATIVE FEEDBACKS
UPON FRONT DYNAMICS:

ACCELERATED AND DECELERATED FRONTS

First let us discuss the action of the global constraints
front dynamics separately forU5const and foru5const.
Consider the propagation of a hot front forU5const when
global coupling occurs only via the constraint~2!. Since
] j /]a,0, the total current in the control circuit decreases
the front propagates and thereforeu increases. Due to
]v/]u.0 ~Fig. 3! that leads to accelerated motion. For
cold front u decreases which also leads to an increase of
absolute value of the front velocity. So we conclude that
global constraint~2! provides positive feedback upon th
front dynamics. Any stationary front is destabilized by th
feedback and starts to move towards the boundary. Fr
.0 these conclusions hold generally for systems withZ-
shaped current-voltage characteristics~see@15# for a detailed
analysis of this case!. For u5const, when the global cou
pling occurs only via the constraint~3!, we take into accoun
that ]J/]a.0, ]v/]U.0. Then a similar reasoning show
that the front propagation is accompanied by a decrease o
increase ofU for hot or cold fronts, respectively. That im
plies negative feedback upon the front dynamics as it ge
ally occurs for semiconductor systems withS-shaped
current-voltage characteristics. Propagation of a hot dece
ated front can lead the system to the homogeneous on
or to a stationary kink pattern. The last situation takes pl
if U reaches the valueUco determined byA50. This kink
pattern is stable for sufficiently largeR ~regime of strong
global coupling! and smalltU ~fast response of the inhibitor
global constraint! @13#.

So we conclude that a propagating front experiences p
tive and negative feedback via the main and control circu
respectively. Since these feedbacks are most efficient
large values ofr, R @13,15# in the following we assume
current-controlled conditions in both circuits:r ,R→`,
u0 /r→ i 0 , U0 /R→I 0 , wherei 0 andI 0 are the total currents
in the gate and main circuits, respectively. We also assu
that t and x are measured in units ofta and l (t→t/ta , x
e

s,

er
f
s

n

s

e
e

an

r-

r-
ate
e

i-
s,
or

e

→x/l), respectively. Then Eqs.~1!–~3! take the dimension-
less form:

]a

]t
5

]2a

]x2
1 f ~a,u,U !, ~7!

e
du

dt
5 j 02u1^a&, e[

c

tasuL
, j 0[

i 0

suL
, ~8!

j
dU

dt
5J02^expa21&, j[

C

taJSL
, J0[

I 0

JSL
, ~9!

where angular brackets denote the spatial average ove
system lengthL. Here we have neglected the Ohmic comp
nentsUU of the current densityJ @see Eq.~5!#. The param-
eterse and j, which have substitutedtu and tU , respec-
tively, characterize the relaxation times related to the glo
constraints and determine the delay of the feedback upon
front dynamics provided by these constraints. This feedb
is instantaneous and hence most efficient fore,j→0 and
vanishes fore,j→`.

III. OSCILLATORY REGIMES OF FRONT DYNAMICS
UNDER TWO CONSTRAINTS

Now we shall study front propagation in the presence
two constraints. Consider a stationary soluti
a0(x),Uco ,uco of Eqs.~7!–~9! that corresponds to the stead
front located in the center of the system atx05L/2 ~inset of
Fig. 4!. The stability of this pattern has been studied nume
cally for a wide range of parameterse, j ~Fig. 4!. The
boundary between stable and unstable regimes in the (e, j)
plane corresponds to an oscillatory instability.~The saddle-
type instabilities that may occur in this model have be
studied fore50, j50 in @19#.! The oscillation frequencyn
;j20.5 at the bifurcation point is given by the relaxatio
time j in the main circuit~Fig. 4, dotted line!. It is readily
seen that the dynamics can be tuned by adjustinge and j.
Let us discuss the results of the stability analysis for the li
cases of slow and fast relaxation.

For e→`, j→` both global parametersu, U do not re-
spond to front position and keep their initial valuesu5u0 ,
U5U0 . Therefore the front dynamics is free from glob

FIG. 3. Front velocityv as a function of the parametersu, U
obtained by direct numercal simulations. Positive and negative
locities correspond to hot and cold fronts, respectively. The fr
velocity v is in units of l /ta , u andU are in units ofkT/e.
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constraints in this case. The eigenmodesC i of the stationary
kink solution a0(x) are determined by the Sturm-Liouvill
operator

H5
d2

dx2
1

] f

]a U
a0~x!,u0 ,U0

, ~10!

which results from the linearization of Eq.~7! in the vicinity
of a0(x). The first eigenmodeC1(x) corresponds to the
translation of the front. In an infinite system its eigenval
l1 is equal to zero due to the translation invariance: a
tionary front has neutral stability. In a finite systeml1 be-
comes positive reflecting the attractive action of the bou
aries but decreases exponentially with the system sizeL @13#.
For e→` @no positive feedback via Eq.~8!# but arbitraryj
we haveu5u0 and Eq.~7! should be considered togeth
with the inhibitory constraint~9!. Negative feedback pro
vided by Eq.~9! suppresses the unstable modeC1 as long as
the response of the global constraint is sufficiently fast@13#.
Increase ofj eventually leads to the situation wherej be-
comes larger than the incrementl1

21 of the unstable transla
tion modeC1 and therefore the global constraint cannot su
press this mode anymore. That causes an oscilla
instability of the stationary front occurring atj5jcr

` . Since
for e→` positiveness ofl1 purely results from the interac
tion of the front with a boundary, the oscillatory instability
this case essentially representsa boundary effect@13,15#.
Due to the exponential decrease ofl1 with increasingL in
practice the oscillatory instability cannot be detected at al
sufficiently large systems. In our numerical simulations p

FIG. 4. Regimes of stability of the stationary fronta0(x) located
at x05L/2 for u050, U0530.75~see inset! in the plane of the time
scales of the global constraints (e,j). The boundary between stab
and unstable regimes corresponds to the oscillatory instability.
simulations have been performed forL5200 ~solid line! and L
5500 ~dashed line!. Further simulations have shown that an i
crease of the system size beyondL5500 does not change th
boundary between stable and unstable fronts.jcr

0 , jcr
` correspond to

the limit casese→0 ande→`, respectively. The dotted line show
the oscillation frequencyn at the bifurcation point forL5500. Nu-
merical parameters arej 0514.4 andJ056.9931011; x andL are in
units of l, n is in units of 1/ta , a is in units ofkT/e.
a-

-

-
ry

n
-

formed for two system sizesL5200 andL5500 ~recall that
L is in units ofl ) the critical valuejcr

` has been achieved onl
for the smaller system sizeL5200 ~Fig. 4, solid line!, since
the instability occurs at very low frequencyn;(jcr

`)20.5.
In the opposite limit casee→0 the positive feedback via

the global constraint~8! is instantaneous. Eliminatingu adia-
batically, we combine Eqs.~7! and~8! into a single integro-
differential equation

]a

]t
5

]2a

]x2
1 f ~a, j 0 ,U !1k^a&. ~11!

The equations of motion are given by Eqs.~11! and ~9! in
this case. The casee→0 is equivalent to the casee→`
when Eq.~7! is substituted by Eq.~11!. The eigenmodes o
the stationary solutiona0(x) of Eq. ~11! are determined by
the operator

H̃[
d2

dx2
1

] f

]a U
a0~x!,u0 ,U0

1k^•••&. ~12!

The self-adjoint operatorH̃ is a sum of the Sturm-Liouville
operatorH and an integral operator of unit rank. The spec
l i andl̃ i of the operatorsH andH̃, respectively, are discret
and intermittent@23#, i.e., there is one eigenvalue of the o
eratorH between any two eigenvalues of the operatorH̃ such
that l̃ i 11,l i,l̃ i . This general feature of self-adjoint op
erators is not based on a perturbation theory with respectk
and holds for arbitrary values ofk @23#. Obviously, the ac-
tion of the integral component of the operatorH̃ is propor-
tional to the mean valuêC i& of the eigenfunctionC i .
Therefore it is most efficient for the ground eigenfuncti
C1 which is strictly positive in the interior of the interva
(0,L). The increase ofl̃1 with respect tol1 occurs due to
the nonlocal coupling reflected by the integral term of E
~11!. This increase leads to a severe decrease of the cri
value jcr

0 with respect tojcr
` ~Fig. 4!. The oscillation fre-

quency increases by many orders of magnitude. The insta
ity now results from the destabilizing positive feedback v
the gate circuit, but not from interaction of a front with
boundary as it is fore→`. This is consistent with the ob
servation thatjcr

0 weakly depends on the system size~Fig. 4,
solid and dashed lines!.

Along the linej5` the parameterU does not change an
keeps its initial valueU5U0 . In this situation the global
coupling occurs only via the constraint~8! and the dynamics
is described by Eqs.~7! and ~8! at U5U0 . A stationary
pattern is always destabilized by the positive feedback p
vided by this constraint. In contrast, for instantaneous ne
tive feedbackj50 prevents the instability for any value o
e.

The interplay between positive and negative feedba
occurs forjP@jcr

0 , jcr
`# ~Fig. 4!. The boundary of the oscil-

latory instability is represented approximately by a straig
line in the (e,j) plane~Fig. 4!. Note that this general featur
of the model~1!,~2!,~3! does not depend on the particul
functionsf (a,u,U), J(a,U), and j (a,u) chosen. Here a de
crease ofe enhances the positive feedback via the glo

e
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FIG. 5. Large amplitude limit-cycle oscillation of a front.~a! Phase portrait in the (w,u,U) space. The front positionw is defined as the
point x wherea(w,t)50.53aon(t). Projections of the limit-cycle trajectory on the (w,u), (w,U), and (u,U) planes are shown as dotte
lines. ~b! Temporal evolution ofa(x,t) corresponding to the limit-cycle oscillation. Numerical simulations are performed forL5500, j
5104, ande51027110283u2, j 0514.4, andJ056.9931011 as in Fig. 4;a, u, andU are in units ofkT/e, w andx are in units ofl, t is
in units of ta .
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constraint~8! and destabilizes the kink pattern whereas
decrease ofj enhances the negative feedback via Eq.~9! and
has a stabilizing effect. Therefore the stability of a station
pattern as well as the oscillation frequency at the bifurcat
point can be easily tuned by the parameterse and j. How-
ever, for e5const, j5const the oscillations develop wit
increasing amplitudeA(t)[w(t)2x0 @herew(t) denotes the
front position defined bya(w,t)50.53aon(t)# and eventu-
ally at A(t)5L/2 the front reaches the boundary. Starti
from this point the system remains in the homogeneous s
exhibiting relaxation-type self-sustained oscillations.

Various mechanisms limiting the amplitude of front osc
lations can be suggested. In particular, self-sustained li
cycle oscillations with a fixed amplitudeA0,L/2 become
possible ife and/orj depend on the value ofu and U, re-
spectively. Indeed, growing oscillations of the front positi
are accompanied by growing oscillations ofu andU around
u0 and U0 , respectively. Provided thate(u) increases and
j(U) decreases with increase ofuu2u0u and uU2U0u, re-
spectively, the positive feedback is diminished and the ne
tive feedback is enhanced as the amplitude of the oscillat
grows. These limiting mechanisms could act jointly if bothe
andj depend on the corresponding voltages, or separate
one of these parameters remains constant. According to
~8! and~9! e andj are proportional to the differential capac
tances of the external circuitscext and Cext, respectively.
Therefore appropriate voltage dependencies can be in
duced by nonlinear external capacitances. Recently ac
external circuits have been implemented for experime
studies of multistable systems@24# and discussed with re
spect to control over spatiotemporal dynamics@25,15#. In
particular, negative capacitance and resistance have bee
alized in@24#. In the case under consideration, a simpler ty
of nonlinear capacitance suffices: it should be positive
substantially depend on the applied voltage. For instanc
steplike dependence of the differential capacitance provid
c(u)5c1 for uu2u0u,uth and c(u)5c2 for uu2u0u.uth
can be realized by an active circuit which effects switch
between two different capacitances depending upon the v
age drop across the semiconductor element@26#; a decreas-
ing dependencee(U) of the external capacitance can b
a
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achieved by a varactor diode. In this paper we restrict o
selves to the case of ane(u) dependence. We have pe
formed simulations for a cubic nonlinearity of the extern
capacitance which results in a second order correction to
differential capacitance:cext(u)5c01c1uu2u0u2. The cor-
respondinge(u) dependence is then given bye(u)5e0
1e1uu2u0u2. The values ofe0 correspond to the unstabl
regime ofe in the (e,j) plane and trigger the instability o
the stationary front foru close tou0 . For a sufficiently large
value ofe1 the oscillations develop into a stable limit cyc
corresponding to oscillations of the front position~Fig. 5!.
The amplitude of these self-sustained oscillations can
tuned by the parameterse0 , e1 and may be increased up t
L/2. The frequency can be tuned by the parameterj. Gener-
ally, the limit-cycle motion is not sensitive to a particula
type of e(u) dependence and may occur for any value oj
from the interval@jcr

0 ,jcr
`#.

We propose that the amplitude of the oscillations mig
also be limited by implementing a second order resona
external circuit that includes an inductance as well, or
imposing asymmetric boundary conditionsa(0,t)
5aon(u0 ,U0), a(L,t)5aoff(u0 ,U0) that keep the front off
the boundary and can be implemented by additional lat
gates~see@15#!.

IV. CONCLUSION

In conclusion, we have proposed a mechanism of an
cillatory instability and large-amplitude limit cycle motion o
a front in a bistable medium. The mechanism is based
imposing two global constraints that provide positiveand
negative feedback upon the front dynamics and act with
justable delay. When taken separately, these constraint
sult in propagation of accelerated and decelerated fronts
spectively. Under two constraints, there is an interp
between feedbacks of different types: Destabilizing action
the positive feedback together with the suppressing actio
negative feedback leads to an oscillatory behavior of
front. The frequency of these oscillations is controlled by t
relaxation time of the inhibitory constraint. The instabili
mechanism occurs purely due to the global coupling and
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not sensitive to the boundary conditions. Limit-cycle oscil
tions become possible if the relaxation time of one or b
global constraints depends on the respective global par
eter of the bistable medium. For appropriate parameters
sustained oscillations can spread over almost the whole
tem ~Fig. 5!. For a pnpn structure considered here larg
amplitude self-sustained oscillations correspond to
periodic spreading and shrinking of a highly modulated a
of a dense electron-hole plasma with an amplitude and
quency easily controlled by external circuits. For light em
ting and laser GaAs structures this amounts to an oscilla
of the active area, which lends itself to applications in opti
systems. However, the suggested mechanism is rather
eral and may occur in other bistable media with two glo
parameters controlling the front behavior as well. In partic
S
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lar, we note chemical reaction systems where global c
pling may be light induced@7# as well as imposed via the ga
phase@8#, and bistable electrochemical systems@10# where
global and nonlocal coupling via the external circuit and t
electrolyte, respectively, has been recently found to resu
propagation of accelerated fronts.
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