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Fronts in a bistable medium with two global constraints:
Oscillatory instability and large-amplitude limit-cycle motion
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We study the propagation of fronts in a reaction-diffusion model of a bistable medium with two global
constraints. The model applies to lateral current density fronts in three-electrode bistable semiconductor sys-
tems driven by the main and gate circuits. When taken separately, these constraints provide positive and
negative feedbacks on front dynamics leading to accelerated and decelerated fronts, respectively. Under two
constraints, there is an interplay between positive and negative feedback resulting in an oscillatory instability
of a stationary front and large-amplitude limit-cycle motion. The instability occurs purely due to the global
coupling and is not sensitive to the effect of the boundafi®$063-651X98)12311-3

PACS numbsg(s): 05.70.Ln, 72.20.Ht, 85.36.z

I. INTRODUCTION AND MODEL type of feedback upon the front dynamics provided by con-
straints via the main and gate circuits, respectively, is quali-
Global and nonlocal coupling has been recently recogtatively different[15]: Whereas for the gate circuit the feed-
nized as an important factor for pattern formation in spatiallyback is positive (activatory constraint and results in
extended active medfd—11]. Generally, global coupling is acceleration of the front motidri5], for the main circuit it is
related to external constraints imposed on the system dynarf€gative(inhibitory constraint and leads to decelerati¢see
ics. For lateral current density patterns in bistable semicon@/S0[13]). In this article we study the complex dynamics of
ductor systems the global coupling is introduced by the excurrent density fro_n_ts that occur due to the interplay between
ternal circuit which is used for operating the systgt]. In negative and positive feedbacks. We demonstrate that the

such systems the global excitation level can be Characterize&estabiIizing action of the activatory constraint together with

by the voltage applied across the device. The dynamics of e stabilizing effect of the inhibitory constraint may result in
self-organized nonlinear patteKe.g., current filament, lat- an oscillatory ‘instability of a stationary front and large-

eral current density front, elcthat causes a variation of the amplitudelimit-cycle motion In contrast to bistable systems

total current simultaneously changes the voltage drop at the

external load and/or internal resistance of the voltage source. J_l_ 5 1

That leads to the variation of the voltage across the device. Ug Coxt UO

This type of feedback is well known with respect to station- — C ,——
ary [12,13 and spiking filament$14] in bistable semicon- r R ext
ductor elements and has been recently discussed for lateral

current density front§15].

In this paper we introduce a model of a bistable medium
with two global constraints. The model applies to lateral cur-
rent density fronts in three-electrodgate-driven bistable
semiconductopnpnstructuregFig. 1). If such a structure is
switched from the low conductivity to the high conductivity
state, a switching front triggers double injection of electrons
and holes from cathode and anode increasing the concentra-
tion of excess carriers up to ten orders of magnitude. The
resulting dramatic increase of both conductivity and light
emission provides a basis for numerous applications not only
in power electronics and optoelectronjd$] but also in pat- 0
tern recognition[17,18. Generally, the spatiotemporal dy-

namics of current density distributions in a qate-driven struc- FIG. 1. Sketch of the gate-drivggnpn structure and the exter-
: u Ity distributl ! g_ v UChal circuits. The potential drops between the cathkdand thep
ture should be considered together witlwvo global

. . he | | . h layer, the gateG, and the anod&\ are denoted by, u, and U,
constraints imposed on the internal dynamics by the externq spectively. The variable controls the internal state of the device.

main and gate circuitsl9]. Recently we have shown that the i values ofa correspond to the high conductivity state of the
device and high current densifybetween the cathode and anode.
The current density front propagates in the transverse direction
*On leave from A. F. loffe Physicotechnical Institute, Russianalong thex axis. The spatial distribution od along they axis is
Academy of Science, 194021 St. Petersburg, Russia. Electronic agdssumed to be homogeneous. The inset shows the cross section of
dress: pavel@rodin.ioffe.rssi.ru the structure.
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FIG. 2. Bistable and monostable regimes of the active medianifferent regimes in the plane of control voltagend supply voltage
U. For the monostable regime théu,U) dependence is single valued. For the bistable regime there are two aglues corresponding
to the stable homogeneous on and off states, respectively, and an intermediate unstallg, st@le inset shows the homogeneous
stationarya(u,U) dependence. Regimes related to hot froras, (propagates int@a,;) and cold fronts &+ propagates int@,, are
depicted. The line separating these two regimes corresponds to zero front velacit)) = 0. (b),(c) Cross sectiona(u) anda(U) of the
a(u,U) dependence & =30.75 andu=0, respectively. The point=0, U=30.75 corresponds to a stationary front. The dashed lines show
the corresponding current-voltage characterigtiece=j(a(u),u) andJ(U)=J(a(U),U) which areZ shaped for the gate circuib) andS
shaped for the main circuit). The Ohmic component of the current densltis neglected. Here and throughout the paper the coefficients
of the local kinetic functiong(a,u,U) are chosen ag=2X 10°, B=14.5,y= 10, k=10 as in[15]. All potentialsa, u, U, andj/o, are
in units ofkT/e; J is in units of Jg.

with a single global constraint, where an oscillatory instabil-of a (see[15,20 for details. Neumann boundary conditions

ity is caused by the attraction of a front by the system boundfor a(x,t) are assumed. Cathode-gate and cathode-anode
aries [13,15, under two constraints the instability occurs voltages are denoted hyandU, respectively. All potentials
purely due to the global coupling ansl not sensitive to the a, u, U are in units ofkT/e. The dynamics olu and U is
boundary conditions. Our consideration is applicable to anyescribed by Kirchhoff's equation®), (3) for the main and
bistable medium with two global parameters controlling thecontrol circuit, respectivelyFig. 1). For the current density

front behavior. per unit length between the gate and the cathj¢deu), and
The model equations between the cathode and anata,U) we assumg¢19,15
da(x,t d%a(x,t .
7, B0 278D w ), NaU)=oyU+Idexm—1), j(au)=o,u-a)
at X (5)
xe[OL], &_a =0, (1)  with linear conductivitiesoy, o. Equations(2) and (3)
X oL represent global constraints imposed on the internal dynam-

ics of a(x,t) and have the form of dynamical equations for
du L the variablea, U of the bistable medium. The limit case of
ru(u)a:uo—u—rfoj(a,u)dx, Ty(u)=re(u), two static constraintsr,,7y=0 has been studied ifl9].
Hereinafter capital and small letters refer to the main and
C(U)=Coxt Cings ) gate circuits, respectively. The characteristic relaxetion times
T,(u),7y(U) are determined by the sums of the differential
L capacitances of the external circuitg;, Ce, and the differ-
Up—U—-R f J(a,u)dx, ential cathode-gate and cathode-anode capacitanggs
0 Cint, respectively. Null isoclines related to these constraints
are controlled by the external loads 0, R>0 and the volt-
age sourcesy, Ug.

Thea(u,U) dependence that results from the null isocline
?(a,u,U) =0 is bistable in a certain range of parametgrd
e[Fig. 2@)]. The a(u) dependence calculated ftt= const
[Fig. 2b)] and the a(U) dependence calculated far
=const[Fig. 2c)] are bothS shaped. The local current-

du

() 57 =

7y(U)=RC(U), C(U)=CqytCiy 3)

describe a gate-driven multilayer semiconductor structur
[19,15 as shown in Fig. 1. The internal state of the structur
is characterized by the order paramed€k,t) determining
the bistability and is governed by the reaction-diffusion
equation (1) with a nonpolynomial local kinetic function

[20,15] voltage characteristic related to the gate circiiu)
' =j(a(u),u) is Z shapedFig. 2(b)] and the local current-
f(a,u,U)=—aa+exm— B exp —U+2a)+ yU+ ku. voltage characteristic related to the main circuitU)

(4) =J(a(U),V) is S shapedFig. 2(c)]. For u,U=const cor-
responding to the bistable regime any steplike initial profile
The order parametex has the meaning of the-base poten- a(x) which consists of the two stable homogeneous steady
tial. The characteristic lengthand the coefficients, B, v, statesa,, and ay; [see Fig. 2a)] develops into a moving
« of the local kinetic function are determined by the struc-front which propagates in a self-similar way with a constant
tural parameterf20], 7, is the characteristic relaxation time velocity v(u,U) (Fig. 3). This corresponds to the propaga-
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tion of a stable state into a metastable sf&tH. The direc- —x/l), respectively. Then Eqg1)—(3) take the dimension-
tion of the front propagation is determined by the sign of theless form:

integral[22]
2

Jda Jda
aon —=—+f(auU), )
A(u,U)sf f(a,u,U)da. (6) It gx
Aoff
. du N _C .o 8
For A>0 the on state propagates into the off statz-Q, hot €gp—loU (a), e= ol 1T (8)

front) and forA<0 the off state propagates into the on state
(v<0, cold fronf. The line of zero velocity (u,U)=0 cor- du c |
responds to the parameterg,,U, given by the equal areas E—=Jy—(exp—1), é=—17, Jo= _0,
rule A(ug,,Uco) =0 [12,27, where co stands for phase co- dt Tadsk Jsb

existence. Note that this line, separating hot and cold l‘rontswhere angular brackets denote the spatial average over the

is also shown in Fig. @). In sufficiently large systemsL( h
>W, whereW is a characteristic front widjithe relaxation ﬁﬁtte m ber;%t{lﬁéHcﬁife\r’f dhei\;?tn?gé?téd (g;]e ?E?'Cafsrr:_po'
of the homogeneous plateaus of the kink pattern is faster Ju ¥ a1 P

than the motion of the front wall and therefore the velocity ofe.terSf and ¢, which have substituted, and 7,, respec-

. : : ively, characterize the relaxation times related to the global
t/haellu%l(s)%?”tﬁ g (;lfgéea? fr;)gtr;]se(ti;t;rnrglsevt\ilitk;]y gtzg (Ijn:::izt:;r;eou%onstraints and determine the delay of the feedback upon the
[1,15] P Y tront dynamics provided by these constraints. This feedback

is instantaneous and hence most efficient éof—0 and
vanishes fore, é— .

C)

Il. POSITIVE AND NEGATIVE FEEDBACKS
UPON FRONT DYNAMICS:

ACCELERATED AND DECELERATED FRONTS [ll. OSCILLATORY REGIMES OF FRONT DYNAMICS

UNDER TWO CONSTRAINTS
First let us discuss the action of the global constraints on
front dynamics separately fdd =const and foru=const.
Consider the propagation of a hot front for=const when
global coupling occurs only via the constraiff). Since
djl9a<0, the total current in the control circuit decreases a:
the front propagates and therefore increases. Due to
dvldu>0 (Fig. 3 that leads to accelerated motion. For a
cold frontu decreases which also leads to an increase of th
absolute value of the front velocity. So we conclude that th
global constraint(2) provides positive feedback upon the
front dynamics. Any stationary front is destabilized by this
feedback and starts to move towards the boundary.rFor
>0 these conclusions hold generally for systems wvdth
shaped current-voltage characterist®se[15] for a detailed
analysis of this cage For u=const, when the global cou-
pling occurs only via the constraif®), we take into account
that 9J/9a>0, dv/dU>0. Then a similar reasoning shows For e, §—>m_poth global parame;e_nf_z, U do not re-
sr;])ond to front position and keep their initial values ug,

that the front propagation is accompanied by a decrease or an _ o
increase ofU for hot or cold fronts, respectively. That im- &EJ—UO. Therefore the front dynamics is free from global

plies negative feedback upon the front dynamics as it gener-
ally occurs for semiconductor systems witB-shaped
current-voltage characteristics. Propagation of a hot deceler-
ated front can lead the system to the homogeneous on state
or to a stationary kink pattern. The last situation takes place
if U reaches the valub., determined byA=0. This kink
pattern is stable for sufficiently large (regime of strong
global coupling and smallr; (fast response of the inhibitory
global constraint[13].

So we conclude that a propagating front experiences posi-
tive and negative feedback via the main and control circuits,
respectively. Since these feedbacks are most efficient for
large values ofr, R [13,15 in the following we assume
current-controlled conditions in both circuits;,R—oo, FIG. 3. Front velocityv as a function of the parameteus U
Ug/r—ig, Ug/R—1q, whereiy andl are the total currents obtained by direct numercal simulations. Positive and negative ve-
in the gate and main circuits, respectively. We also assumigcities correspond to hot and cold fronts, respectively. The front
thatt and x are measured in units af, and| (t—t/7,, X  velocity v is in units ofl/7,, uandU are in units ofkT/e.

Now we shall study front propagation in the presence of
two constraints. Consider a stationary solution
ag(x),U¢o,Uco Of Egs.(7)—(9) that corresponds to the steady
front located in the center of the systemxgt=L/2 (inset of
SFig. 4). The stability of this pattern has been studied numeri-
cally for a wide range of parameteks ¢ (Fig. 4). The
boundary between stable and unstable regimes in¢hé&)(
lane corresponds to an oscillatory instabilitfhe saddle-
ype instabilities that may occur in this model have been
studied fore=0, £&=0 in[19].) The oscillation frequency
~¢795 at the bifurcation point is given by the relaxation
time & in the main circuit(Fig. 4, dotted ling It is readily
seen that the dynamics can be tuned by adjustiramnd &.
Let us discuss the results of the stability analysis for the limit
cases of slow and fast relaxation.
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formed for two system sizeds= 200 andL =500 (recall that
104 5 10 L is in units ofl) the critical valuet;, has been achieved only
F ] for the smaller system side= 200 (Fig. 4, solid ling, since
5004 the instability occurs at very low frequenay~ (£2) %>,
106 1 In the opposite limit case— 0 the positive feedback via
4102 the global constraint8) is instantaneous. Eliminatingadia-
€ 1 v batically, we combine Eqg7) and(8) into a single integro-
differential equation
108
3107 _5a i 11
on . 5= T H(@Ie V) + K@), (10
The equations of motion are given by Eq$l) and (9) in
jore et i e 0 d 104 this case. The case—0 is equivalent to the case—o
108 go 104 108 §°° 107 when Eq.(7) is substituted by Eq(11). The eigenmodes of
cr g cr the stationary solutiomy(x) of Eq. (11) are determined by

the operator
FIG. 4. Regimes of stability of the stationary framj(x) located

atxy=L/2 for uys=0, U,=30.75(see insetin the plane of the time I G
scales of the global constraints,£). The boundary between stable H= > + “a +r(). (12
and unstable regimes corresponds to the oscillatory instability. The dx a ag(x),ug. Uy

simulations have been performed fbr=200 (solid line and L

=500 (dashed ling Further simulations have shown that an in- The self-adjoint operatdFI is a sum of the Sturm-Liouville
Ereasocle Ofbtht?/v SyStetmbls'ze ;eyo?dgfof()c);@?}mt Cha”gz :he operatorH and an integral operator of unit rank. The spectra
oundar etween stable ana unstaple ir . correspond to ~ ~ . .
y o P \; and\; of the operator$l andH, respectively, are discrete

the limit cases— 0 ande— o, respectively. The dotted line shows . . . . )
the oscillation frequency at the bifurcation point fot. =500. Nu- and intermitten{23], i.e., there is one eigenvalue of the op-

merical parameters ajg=14.4 and),=6.99x 10'%; xandL are in  eratorH between any two eigenvalues of the operatasuch

units ofl, v is in units of 1f,, ais in units ofkT/e. that\;,;<\;<X\;. This general feature of self-adjoint op-
erators is not based on a perturbation theory with respect to

constraints in this case. The eigenmodgsof the stationary  and holds for arbitrary values of [23]. Obviously, the ac-

kink solution ag(x) are determined by the Sturm-Liouville tion of the integral component of the operatéris propor-

operator tional to the mean valué¥;) of the eigenfunctionV;.
) Therefore it is most efficient for the ground eigenfunction
_a (10 W1 which is strictly positive in the interior of the interval
dx?> da ag(x),ug.Ug (OL). The increase ok, with respect tox; occurs due to

the nonlocal coupling reflected by the integral term of Eq.
which results from the linearization of E(¥) in the vicinity ~ (11). This increase leads to a severe decrease of the critical
of ap(x). The first eigenmodel,(x) corresponds to the value £2 with respect to&, (Fig. 4. The oscillation fre-
translation of the front. In an infinite system its eigenvaluequency increases by many orders of magnitude. The instabil-
A1 is equal to zero due to the translation invariance: a staity now results from the destabilizing positive feedback via
tionary front has neutral stability. In a finite system be-  the gate circuit, but not from interaction of a front with a
comes positive reflecting the attractive action of the boundboundary as it is foe—o. This is consistent with the ob-
aries but decreases exponentially with the systemLs[4s]. servation thalgfgr weakly depends on the system sigdy. 4,
For e— [no positive feedback via E@8)] but arbitraryé  solid and dashed lings
we haveu=uy and Eq.(7) should be considered together  Along the lineé=« the parameteld does not change and
with the inhibitory constraint(9). Negative feedback pro- keeps its initial valueU=U,. In this situation the global
vided by Eq.(9) suppresses the unstable moble as long as  coupling occurs only via the constraif@) and the dynamics
the response of the global constraint is sufficiently faS]. is described by Eqs(7) and (8) at U=U,. A stationary
Increase of¢ eventually leads to the situation whegebe-  pattern is always destabilized by the positive feedback pro-
comes larger than the incremen ! of the unstable transla- vided by this constraint. In contrast, for instantaneous nega-
tion modeW ; and therefore the global constraint cannot sup-ive feedbacké=0 prevents the instability for any value of
press this mode anymore. That causes an oscillatory.
instability of the stationary front occurring &t=&. Since The interplay between positive and negative feedbacks
for e—c positiveness ok, purely results from the interac- occurs foré e[ €5, €] (Fig. 4. The boundary of the oscil-
tion of the front with a boundary, the oscillatory instability in latory instability is represented approximately by a straight
this case essentially represerasboundary effecf13,15. line in the (¢, &) plane(Fig. 4). Note that this general feature
Due to the exponential decrease \of with increasingL in of the model(1),(2),(3) does not depend on the particular
practice the oscillatory instability cannot be detected at all iffunctionsf(a,u,U), J(a,U), andj(a,u) chosen. Here a de-
sufficiently large systems. In our numerical simulations percrease ofe enhances the positive feedback via the global
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FIG. 5. Large amplitude limit-cycle oscillation of a frorte) Phase portrait in thew,u,U) space. The front positiow is defined as the
point x wherea(w,t)=0.5Xa,.(t). Projections of the limit-cycle trajectory on thev{u), (w,U), and (u,U) planes are shown as dotted
lines. (b) Temporal evolution ofa(x,t) corresponding to the limit-cycle oscillation. Numerical simulations are performed 600, £
=10%, ande=10""+10"8xu?, j,=14.4, andl,=6.99x 10" as in Fig. 4;a, u, andU are in units ofk T/e, w andx are in units ofl, t is
in units of 7.

constraint(8) and destabilizes the kink pattern whereas aachieved by a varactor diode. In this paper we restrict our-
decrease of enhances the negative feedback via@gand selves to the case of ae(u) dependence. We have per-
has a stabilizing effect. Therefore the stability of a stationaryformed simulations for a cubic nonlinearity of the external
pattern as well as the oscillation frequency at the bifurcatiorcapacitance which results in a second order correction to the
point can be easily tuned by the parametersnd £&. How-  differential capacitancece,(u)=cqy+c,|u—Uug|%. The cor-
ever, for e=const, £&=const the oscillations develop with respondinge(u) dependence is then given by(u)=¢q
increasing amplitudé(t)=w(t) — xo [herew(t) denotes the +e;|u—ug|?. The values ofe, correspond to the unstable
front position defined bya(w,t)=0.5Xa,,(t)] and eventu- regime ofe in the (¢,£) plane and trigger the instability of
ally at A(t)=L/2 the front reaches the boundary. Startingthe stationary front fou close touy. For a sufficiently large
from this point the system remains in the homogeneous statealue of e; the oscillations develop into a stable limit cycle
exhibiting relaxation-type self-sustained oscillations. corresponding to oscillations of the front positidfig. 5).
Various mechanisms limiting the amplitude of front oscil- The amplitude of these self-sustained oscillations can be
lations can be suggested. In particular, self-sustained limittuned by the parameteks, €; and may be increased up to
cycle oscillations with a fixed amplitudd,<L/2 become L/2. The frequency can be tuned by the paramétegener-
possible ife and/or¢ depend on the value af andU, re-  ally, the limit-cycle motion is not sensitive to a particular
spectively. Indeed, growing oscillations of the front positiontype of e(u) dependence and may occur for any valuet of
are accompanied by growing oscillationswéndU around  from the intervall £2,,£%].
up and Uy, respectively. Provided that(u) increases and We propose that the amplitude of the oscillations might
£(U) decreases with increase of—ug| and |U—Ug|, re-  also be limited by implementing a second order resonance
spectively, the positive feedback is diminished and the negaexternal circuit that includes an inductance as well, or by
tive feedback is enhanced as the amplitude of the oscillationgnposing asymmetric  boundary  conditionsa(0,t)
grows. These limiting mechanisms could act jointly if bath  =a_(uy,U,), a(L,t)=ay(ug,U,) that keep the front off
and ¢ depend on the corresponding voltages, or separately the boundary and can be implemented by additional lateral
one of these parameters remains constant. According to Eqgates(see[15]).
(8) and(9) € and¢ are proportional to the differential capaci-
tances of the exte_rnal Circuits,,; and Cgy, 'respectively.. IV. CONCLUSION
Therefore appropriate voltage dependencies can be intro-
duced by nonlinear external capacitances. Recently active In conclusion, we have proposed a mechanism of an os-
external circuits have been implemented for experimentatillatory instability and large-amplitude limit cycle motion of
studies of multistable systeni24] and discussed with re- a front in a bistable medium. The mechanism is based on
spect to control over spatiotemporal dynamjé$,15. In imposing two global constraints that provide positiged
particular, negative capacitance and resistance have been reegative feedback upon the front dynamics and act with ad-
alized in[24]. In the case under consideration, a simpler typgustable delay. When taken separately, these constraints re-
of nonlinear capacitance suffices: it should be positive andult in propagation of accelerated and decelerated fronts, re-
substantially depend on the applied voltage. For instance, spectively. Under two constraints, there is an interplay
steplike dependence of the differential capacitance providingpetween feedbacks of different types: Destabilizing action of
c(u)=c; for [u—ug|<uy, and c(u)=c, for [u—ug|>uy, the positive feedback together with the suppressing action of
can be realized by an active circuit which effects switchingnegative feedback leads to an oscillatory behavior of the
between two different capacitances depending upon the volfront. The frequency of these oscillations is controlled by the
age drop across the semiconductor elenj2f}; a decreas- relaxation time of the inhibitory constraint. The instability
ing dependence:(U) of the external capacitance can be mechanism occurs purely due to the global coupling and is
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not sensitive to the boundary conditions. Limit-cycle oscilla-lar, we note chemical reaction systems where global cou-
tions become possible if the relaxation time of one or bothpling may be light inducefi7] as well as imposed via the gas
global constraints depends on the respective global paranphase[8], and bistable electrochemical systefi§] where
eter of the bistable medium. For appropriate parameters selfflobal and nonlocal coupling via the external circuit and the
sustained oscillations can spread over almost the whole syslectrolyte, respectively, has been recently found to result in
tem (Fig. 5. For apnpn structure considered here large- propagation of accelerated fronts.

amplitude self-sustained oscillations correspond to the
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